
JOURNAL OF MATERIALS SCIENCE: MATERIALS IN M E D I C I N E  5 (1994) 214-218 

Measurement of the elastic modulus 
of fibre-reinforced composites 
used as orthodontic wires 
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The mechanical properties of an orthodontic wire pultruded from S2-glass-reinforced 
polyethyleneterephthalate glycol (PETG) were measured using two experimental devices 
simulating clinical conditions. A comparison of moduli measured in the clinically relevant devices 
with those measured in a standard flexural test reveals that data obtained using small 
cross-section, short span length clinical specimens require corrections associated with clamping 
and shearing effects. The clamping effect dominates and is caused by the softening of the material 
near the clamps. The shear effect becomes important at high fibre volume fractions and small 
span/thickness ratios. With adoption of these corrections, good agreement between moduli 
calculated using rule of mixtures and those measured in clinical tests is achieved. The analytical 
base developed for prediction of the stiffness of the orthodontic wire for different span/thickness 
ratios improves .the procedure for design of dental appliances. 

1. Introduct ion  
Continuous fibre-reinforced plastics (FRP) are widely 
used in many aerospace, automotive and recreational 
applications, primarily because of their high stiffness 
and strength per unit weight. The growing availability 
of various polymer matrices, reinforcing fibres and 
processing techniques, as well as the decreasing cost, 
offer new design opportunities in other fields. A con- 
trol of material behavior, the potential for in situ 
forming of an appliance iia a clinical setting, the ability 
to bond directly to a tooth structure and the fabrica- 
tion of translucent, esthetic devices, make glass fiber- 
reinforced composites attractive candidates as struc- 
tural components for dental applications. They can be 
successfully adapted to a number of dental uses, such 
as frameworks for provisional bridges, splints, re- 
tainers, space maintainers and orthodontic wires, 
either as substitute materials in currently used devices 
or as a means of creating novel designs. 

The use of fibre-reinforced composites has been 
described in the dental literature for at least 30 years. 
However, while virtually all reports show positive 
results, fibre reinforcement has not been successfully 
reduced to clinical practice [1]. This is probably due 
to low fibre loading, ineffective stress transfer to the 
reinforcement, and demanding manipulative proced- 
ures in the clinical setting. Recent work demonstrated 
that the use of pultruded thermoplastic prepregs may 
obviate these problems [1-3]. 

Cricital to the development of FRC for dental ap- 
plications are adequate characterization and predic- 
tion of flexural properties (modulus, strength, strain) 
and reliable design procedures. Even though an ortho- 
dontic wire is "monodimensional" in the sense that its 
length is many orders of magnitude greater than its 
cross-section, the anisotropic nature of FRC wires 
insures that the transverse (radial) properties of the 
wire are as important to their mechanical performance 
as are the longitudinal (axial) properties. While the 
longitudinal properties define the tensile strength and 
stiffness of the wire, the transverse properties control 
the shear strength and the long term stability of the 
device in the oral environment. Structural compo- 
nents in orthodontic appliances are stressed mainly in 
flexure. Standard flexural tests (3- or 4-point bending) 
are based on long beam theory [4], assuming free 
beam ends, and they do not provide an accurate 
means of determining intrinsic properties of specimens 
with a small span length/thickness ratio (L/d) and 
clamped at one or both ends. Thus, an experimental 
procedure to simulate clinical conditions using small 
cross-section, short span length and clamped speci- 
mens is required. Novel testing devices have been 
developed to provide both clinically relevant data and 
material intrinsic properties [5, 6]. 

The aim of this study is to provide an analytical 
base for evaluation of the intrinsic mechanical proper- 
ties of unidirectional long fibre composite wires from 
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experimental data obtained in tests on clinically rel- 
evant specimens. The effect of the fibre volume frac- 
tion and specimen geometry on the elastic modulus is 
investigated. Analytical relations between the 
load-deflection data of the orthodontic wire tested in 
two clinically relevant devices and the intrinsic mech- 
anical characteristics of the composite are developed 
using a short beam theory [7] for the two different 
loading geometries. 

2. Mater ia ls  and methods 
Continuous S2-glass fiber-reinforced polyethylene- 
terephthalate glycol (PETG Copolyester 67743; East- 
man Chemical Products, Kingsport, TN, USA) wires 
were pultruded to nominal cross-sectional dimensions 
of 0.483 mm x 0.635 mm at Polymer Composites, Inc. 
(Winona, MN, USA). The S2- glass fibres were coated 
with glycidoxy-propyltrimethoxy silane A187 of 
Union Carbide (Danbury, CT, USA). The fibre vol- 
ume fraction of the wire was determined from the 
weight fraction after ashing. Fibre content ranged 
between 40% and 60% by volume. 

The elastic modulus of the pultruded composite 
wire and unreinforced PETG were measured with the 
devices shown in Fig. 1. In device I, the specimen was 
clamped rigidly at one end and simply supported 
at the other (Fig. la). A moment is applied at the 
clamped end and the deflection is recorded as a func- 
tion of applied moment for a given span length. 
A torque watch (Waters Manufacturing, MA, USA) 
was used to measure the moment and a dial gauge was 
used to record the angular rotation. Clinically relevant 
span lengths from 0.5 to 3.0 cm (L/d ratio from 10 to 
60) were tested. To simulate the actual clinical situ- 
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Figure la Schematic representation of device I. Symbols described 
in the text. 
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Figure lb Schematic representation of device II. Symbols described 
in the text. 

Figure 1c Photograph of device I. 

ation, a two bracket step geometry deflection appar- 
atus was used (Fig. lb). A sample wire was loaded into 
the brackets in an even and parallel position with span 
lengths of 5 and 10 mm (L/d ratio of 10 and 20). One 
of the brackets was then deflected in increments of 
0.1 mm with the brackets remaining parallel through- 
out the test. At each increment of deflection, a force 
transducer read from the deflecting bracket the verti- 
cal and horizontal forces and input these data into 
a computer. Tests were performed at room temper- 
ature. 

Large samples for standard ftexural tests were pre- 
pared by a filament winding procedure by passing 
a bundle of treated fibres through a solution of PETG 
in chloroform and winding the coated fibres on 
a rotating drum. Sheets were then compression 
moulded out of the wound "prepregs" and specimens 
for standard flexural tests were cut so that the span 
length was parallel to the direction of fibres. 
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3. Results and discussion 
For device I, the modulus is determined from the. 
linear portion of the moment-deflection curve using 
a standard long beam formula [8]: 

E* = (1/3) L M / 8 I  (1) 

where L is the beam span length, I is the moment of 
inertia of the cross-section, M is the applied moment 
and ~ is the associated deflection. For  device II, one 
can calculate the apparent modulus using an expres- 
sion [9]: 

E* = pL3/(bd 3 5) (2) 

where P is the measured force, ~ is the associated 
deflection, b and d are the width and thickness of the 
beam, respectively, and L is the span length. The 
measured value of E* from the clinical devices is 
referred to as an apparent modulus, since it increases 
with the span length, approaching asymptotically the 
value of longitudinal tensile modulus EL predicted 
using the rule of mixtures [10]: 

E L = E f v f  + EmV m (3) 

where Ef and E m a r e  the fibre and matrix moduli and 
vf, Vm are the volume fractions of constituents. Values 
of E* as a functiofi of span length are shown in Fig. 2. 
The asymptotic values of 35 GPa  and 48 GPa  at 40 
and 56 vol % fibre content, respectively, are identical 
to those predicted from the rule of mixtures using 
85 GPa  and 2 GPa  for the moduli of S-glass and resin, 
respectively. Values of the longitudinal modulus EL, 
determined in the standard flexural test, are in good 
agreement with the asymptotic values given above. 

The dependence of E* on the span length c~m be 
described in terms of the effects of specimen geometry, 
clamping and shear phenomena. The major contribu- 
tion to deviations from the true modulus in these 
devices is from the clamping, which causes a "soften- 
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Figure 2a The dependence of the elastic modulus in flexure on the 
span length/thickness ratio for two S2-glass fibre volume fractions 
in PETG matrix determined using device I. Points represent experi- 
mental data, lines stand for theoretical predictions. 
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Figure 2b Comparison of the predicted (solid line) and experi- 
mental (points) values of elastic moduli in flexure for device II. 
PETG contains 40 vol % of S2-glass fibres. 

ing" of the material near the clamp. Our analysis is 
based on the assumption that beam deflections at the 
clamp, as well as the clamping itself, cause fibre break- 
age and matrix yielding. As a result of the fibre frag- 
mentation, the matrix material near the clamp cannot 
transfer as much load to the fibres and thus the beam 
appears to be less rigid in this region than in the rest of 
the beam. The "softened" zone will be no shorter than 
the beam width, since the yield plane will be at ap- 
proximately 45-50 ° to the fibre axis. It may be some- 
what longer than this since broken fibre ends will 
create an "ineffective length" (ll) over which the fibres 
cannot be fully loaded [11]. For E-glass fibre well 
bonded to thermoplastic matrices it has been shown 
that the "ineffective length" will be of the order of 
0.4-0.6 mm [12], which will have a significant effect 
on the stiffness of typical orthodontic wires. 

Our devices are therefore modeled as composite 
beams consisting of a "soft" zone of length L1 and 
modulus Es adjacent to the clamp, butted to a rigid 
zone of length (L - L1) and modulus EL, as shown in 
Fig. 1. The length L1 will be equal to the larger of 
beam thickness, d, or the ineffective length, Li. This 
composite beam can be analyzed utilizing the prin- 
ciple of equivalent sections by replacing the "soft" 
zone with a "rigid" zone of cross-section area given by 
[13]: 

Arigid = (Esoft /Erigid)  Asoft (4) 

In terms of the moments of inertia of a rectangular 
beam of unit width: 

Irigid/Isoft  = (drlgid/dsoft) 3 = (Esoft /Erigid) 3 (5) 

This is shown schematically in Fig. 1 and the analysis 
is summarized briefly in Appendices A and B. 

The relationship between the true elastic modulus 
EL and the apparent one E* can be expressed as: 

EL = C E* (61 



where the correction factor C ~ for a glass fibre- 
reinforced composite beam in device I is given as 
(Appendix A): 

C ' =  {(1 + ( I / I~ -  1)[3/2(d/L)- 1/2(d/L)2]} 

X { 1 --  3/8 (E  L / G) (d/L)2 } -1  (7) 

and C" for device II is given as (Appendix B): 

C H= {(1 + 12(I/Is-  1)E1/2(d/L)-(d/L) 2 

+ 2/3(d/L)3]} x {1 -- 3/2(EL/G)(d/L)2} - t  (8) 

where I and Is are the moments of inertia of the rigid 
and soft portion of the beam, respectively, d and L are 
beam thickness and span length and G is the in-plane 
shear modulus measured in an independent experi- 
ment. The shear correction only accounts for less than 
10%. 

A fitting of the experimental data for both geomet- 
ries with proposed analytical expressions (Equations 
6-8) yields the empirical parameter (I/Is) equal to 
about 7.5 for device I and about 5 for device II. From 
Equation 5 one can calculate the modulus of the soft 
zone near the clamp to be about 0.5 of that for the 
remainder of the beam, which is consistent with the 
notion that the clamped end behaves as a short (bro- 
ken) fibre composite [14]. 

The shear correction becomes relatively more im- 
portant with increasing fibre volume fraction, espe- 
cially in the case of a weak matrix-fibre interface. After 
making these two corrections the modulus obtained 
from data on the clinically relevant specimens is with- 
in 10% of the intrinsic value of EL predicted using the 
rule of mixtures at all span to depth ratios studied. 
This discrepancy may be attributed to the difference 
between the compressive and tensile modulus of the 
material [15-17] and/or to the simplifying assump- 
tions of the mechanical analysis. 

4. Conclusions 
When using continuous glass fibre-reinforced ther- 
moplastics as orthodontic wires, the intrinsic stiffness 
of the material cannot be fully utilized. Short beam 
lengths, clamped ends and relatively high flexural de- 
formations at the clamps lead to shear effects and fibre 
damage that reduce the rigidity of the appliance. Two 
experimental devices have been used to simulate clini- 
cal use of orthodontic wires. The apparent beam 
stiffnesses obtained in the devices have been measured 
and analytical models developed to relate the results 
to the intrinsic properties of the beam. It appears that 
within a distance from the clamps of roughly either the 
thickness of the beam or the ineffective fibre length in 
the composite, the stiffness can be reduced to about 
one half that of the remainder of the wire. This is 
indicative of fibre breakage and matrix shearing near 
the clamps. The information provided in this work 
should be useful in the design of dental appliances 
made of continuous fibre-reinforced plastics. 

A p p e n d i x  A 
The relation between the tensile modulus (EL) and the 

apparent modulus (E*) can be obtained from the 
differential equations for the elastic deformation of the 
composite beam. For our system we assume that the 
soft zone has a length equal to beam thickness, Li = d. 
Referring to Fig. la, one can write the differential 
equations for the beam as [13]: 

E*I(d2y/dx 2) = M(1 - x/L) for 0 < x < L (A1) 

with boundary conditions y = 0 at x = 0, x = L, and 
for the equivalent beam as: 

ELls(d2y/dx 2) = m(1 - x/L) for 0 < x < d, (A2) 

with boundary conditions y = 0 at x = 0 and y = YB 
at x = d and 

ELl(dZy/dx 2) = M(1 - x/L) for d < x < L (A3) 

with boundary conditions y = YB at x = d and y = 0 
at x = L, where (EL/s) and (ELI) are the flexural 
rigidities of the two zones, M is the applied bending 
moment, and L and d are the span length and beam 
thickness, respectively. Solving the above equations 
under the boundary and continuity conditions and 
comparing the solution for the equivalent beam with 
that for the homogeneous beam, one can determine 
a relation between the corrected modulus EL and the 
apparent one E*: 

EL = {(1 + ( I / I s -  1)[3/2(d/L)- 1/2(d/L)Z]} x E* 
(A4) 

for device I. As (d/L) approaches zero, i.e. for long 
beams, the apparent modulus reaches the true longi- 
tudinal Young's modulus EL predicted by the rule of 
mixtures: 

E L = Efvf "-k E m / )  m (A5) 

where El, E m a r e  the fibre and matrix moduli, re- 
spectively, and vf, Vm are the component volume 
fractions. 

The shear correction can be simply accounted using 
an expression commonly utilized [19]: 

EL = {1 -- (3/8)(EL/G)(d/L)2} -1 x (EL) . . . . . .  (A6) 

where G is the material shear modulus determined in 
an independent test. Thus, one can account for both 
corrections in the resulting expression: 

E L = {(1 -'k ( I / I s -  1)[3/2(d/L)- 1/2(d/L)2]} 

x {1 - 3/8(EL/G)(d/L)Z} -~ x E* (A7) 

for device I. 
Young's modulus EL for a homogeneous solid is 

equal to the flexural modulus E[ ~ex only in the case 
when compressive and tensile moduli are equal [14]. 
Also, for long fiber-reinforced composites, the flexural 
modulus measured in a 3-point bending test is higher 
than the tensile modulus because of the length de- 
pendence of fibre strength. For glass-reinforced com- 
posites, the relation between flexural and tensile 
moduli can be estimated by [13]: 

E[ lex = {[2(1 + re)lUre}EL ,~ 1.64EL (A8) 

where m is the Weibull dispersion parameter for the 
fibres [18]. 
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Appendix B 
A similar procedure to that in Appendix A can be used 
to evaluate the effect of clamping for device II 
(Fig. lb). The homogeneous beam is substituted by 
a pair of matched cantilever beams undergoing equal 
deformation. Each cantilever can then be replaced by 
an equivalent composite beam with the length of sof- 
tened zone near the clamps equal to d. In this case, the 
force P is measured for any deflection. Then the basic 
beam equations can be written as [91: 

E*I(d2y/dx 2) = eL~2 [1 - 2x/L] for 0 < x < L/2 

(B1) 

with boundary conditions y = 0, dy/dx = 0 at x = 0, 

EIs(d2y/dx 2) = PL/2  [1 - 2x/L] for 0 < x < d 

(B2) 

with boundary conditions y = 0, dy/dx = 0 at x = 0, 
y = yB at x = d and 

EI(dZy/dx 2) = PL/2  [1 - 2x/L] for d < X < L/2 

(B3) 

with boundary conditions y = 6/2 at x = L/2, y = YB 
at x = d. Solving Equations B1-B3 using appropriate 
boundary and continuity conditions and comparing 
the solution for the composed beam with that for 
a homogeneous beam, one can obtain the relationship 
between the intrinsic elastic modulus for the glass 
fibre-reinforced beam and the apparent  one: 

E L = ~(1 + 12(I/Is - 1)[1/2(d/L) - (d/L) 2 

+ 2/3(d/L) 3 ] } E~ (B4) 

Accounting for the shear effect, one obtains a final 
expression for the longitudinal elastic modulus from 
the values obtained with clinical device II: 

EL = {(1 + 1 2 ( I / I s -  1)[1/2(d/L) 

-- (d/L) 2 + 2~3(d/L)33 } 

× {1 - (3 /2 ) (EL /G) (d /L )Z}  - '  x E *  (B5)  
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